

Index

2 Epidemiological Trends of Dengue Virus Infection in Riyadh region, Saudi Arabia: A Cross- Sectional Study (September 2022 – December 2024)

5 Dengue Fever Outbreak in North AL Batinah Governorate (Oman), January 2023- December 2023.

8 Prevalence, Risk Factors, and Characterization of Multidrug-resistant Organisms in King Saud Medical City, 2023-2024

11 Foodborne Disease Outbreak in a Primary School for Girls, Riyadh, Saudi Arabia, 2023: A Retrospective Cohort Study

13 Summary of the Studies in Arabic

Epidemiological Trends of Dengue Virus Infection in Riyadh region, Saudi Arabia: A Cross- Sectional Study (September 2022 – December 2024)

Reported by: Dr. Saleh Assad Alghamdi , Dr. Afnan S. Yonis

Globally, around four billion people, nearly half the world's population, live in dengue-endemic areas, with an estimated 400 million infections each year, of which approximately 50-100 million become symptomatic [1].

Dengue fever caused by a Flavivirus transmitted predominantly by *Aedes aegypti* and *Aedes albopictus* mosquitoes, dengue virus is currently the most prevalent arboviral infection affecting humans worldwide [2]. By 2080, projections estimate that more than six billion individuals, nearly double the number at risk in 2015, could be susceptible to dengue virus infections, underscoring the urgency of enhanced control measures [1].

Though Saudi Arabia remained largely dengue-free until the mid-1990s, outbreaks have become increasingly frequent since 1994, marking the dis-

ease's establishment as a significant public health challenge in the region [3,4]. By 2013, over 6,500 cases were reported, and more recent data from 2022 indicate 3,647 cases nationwide, including 115 cases in Riyadh [5].

Given Riyadh's growing population, urban sprawl, and increased travel and migration, understanding the city's dengue dynamics is critical. Our study aimed to fill the existing knowledge gap by identifying dengue virus high-risk demographic profiles in Riyadh region. In addition to analyzing seasonal and temporal patterns of dengue outbreaks and examining the association between recent travel history and dengue infection. Moreover, we assessed the knowledge and preventive practices among the reported cases in Riyadh region regarding dengue fe-

(Continued on page 3)

Table 1: Distribution of confirmed Dengue virus cases according to socio-demographic in Riyadh region, Saudi Arabia

Variable	Categories	n=683	
		No.	%
Year of infection	2022*	101	14.8
	2023	289	42.3
	2024	293	42.9
Age	< 5	4	0.6
	5-<15	22	3.2
	15-<25	61	8.9
	25-<35	203	29.7
	35-<45	203	29.7
	45-<55	88	12.9
	55-<65	63	9.2
	>65	39	5.7
	Age (Mean ± SD)	38.6±14.8	
	Gender		
Nationality	Male	475	69.5
	Female	208	30.5
Geographic distribution	Saudi	334	48.9
	Non-Saudi	349	51.1
Neighborhood	Riyadh city	563	82.4
	Other Governorates in Riyadh	8	1.2
	Other regions in SA	3	0.4
	Unknown	109	16
	Alnajjis	72	10.5
Neighborhood	Alaridh	51	7.5
	Other**	560	82

SD= Standard Deviation

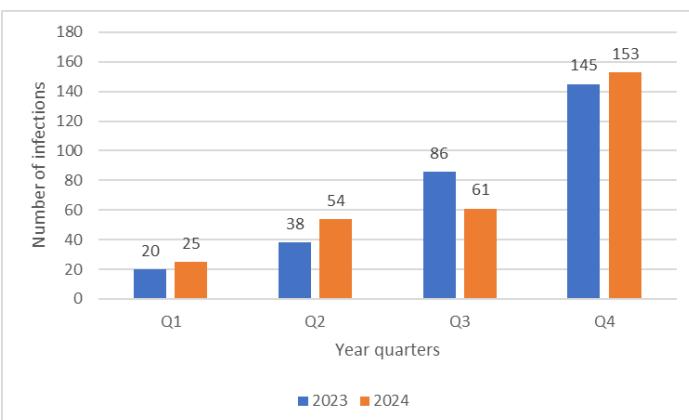
SA= Saudi Arabia

*= This almost represents Q4 of the year, since the detection of the first case in Riyadh region.

**= None of the other neighborhoods is represented by a considerable proportion (i.e., < 5%), or even a considerable sample size (n < 25); thus, they were combined into "other"

Epidemiological Trends of Dengue Virus Infection in Riyadh region, Saudi Arabia: A Cross- Sectional Study (September 2022 – December 2024)

Cont..


ver.

By achieving these objectives, our study will generate evidence-based recommendations to inform public health strategies for dengue prevention and control in Riyadh region, aligning with national priorities to combat vector-borne diseases.

We conducted a cross-sectional study using a secondary data of all dengue virus cases reported in Riyadh region, from Mid-September 2022 to December 2024. The dataset was obtained from the Ministry of Health, Vector-Borne Diseases Department. Our objectives were to assess dengue virus demographic characteristics in Riyadh region, identifying high-risk areas, analyzing the temporal trends and seasonal patterns of the disease and to investigate the relationship between some risk factors and dengue virus cases aiming to understand the epidemiology of dengue virus and its impact on public health in Riyadh region.

Out of 1544 recorded cases, 44.2% (N=683) were confirmed dengue cases. Among them, 85.2% were infected in 2023 and 2024. About 60% were aged between 25 - <45 years old, with the least infected age group being less than 15 years. Nearly two-thirds of cases were males, and almost half were Saudis. Majority of confirmed cases were located in Riyadh city (82.4%) and the most frequently reported neighborhoods of the cases were Alnajrjis (10.5%) and Alaridh (7.5%). (Table 1)

Figure 1: The quarterly distribution of confirmed dengue infections in Saudi Arabia for 2023 and 2024

The quarterly distribution of confirmed dengue infections for both 2023 and 2024 reveals a consistent upward trend throughout each year, with a pronounced surge observed in the fourth quarter (October-December). In 2023, the number of cases rose steadily from 20 in Q1 (January-March) to 145 in Q4. Similarly, in 2024, infections increased from 25 in Q1 to 153 in Q4. Notably, the rise between Q3 (July-September) and Q4 was the most significant in both years (from 86 to 145 in 2023, and from 61 to 153 in 2024). (Figure 1)

Regarding factors associated with dengue virus infection, (Table 2) reveals that the mosquito exposure and presence of stagnant water are significantly different with Dengue infection (p-value 0.000, 0.003, respectively). The rate of exposure to mosquitoes was higher in the confirmed cases (50.8%, as compared to 35.4% in the probable cases), the rate of presence of stagnant water was relatively higher in the confirmed cases (25.5%, compared to 16.2% in the probable cases). Other factors, such as travel within 14 days, means and place of travel were insignificantly associated.

On assessing knowledge, the majority of the confirmed cases (89.9%) expressed that they know the risk factors that lead to mosquito proliferation. Factors related to water accumulation were the most mentioned (79.4%). The majority (85.8%) reported that they use mosquito repellent products. When confirmed cases were asked about diseases transmitted by mosquito bites, (43.8%) mentioned the dengue virus, (19.8%) mentioned malaria and (12.9%) mentioned both dengue and malaria.

Environmental factors significantly associated with infection included presence of stagnant water which create optimal breeding grounds for Aedes mosquitoes, whose flight range is limited [6]. The "Balady" platform by the Saudi government has improved public engagement by enabling community reporting of environmental hazards like stagnant water [7].

Our study showed many implications, highlighting significant dengue fever-related factors, trend of dengue fever cases, and displaying the seasonal

Epidemiological Trends of Dengue Virus Infection in Riyadh region, Saudi Arabia: A Cross- Sectional Study (September 2022 – December 2024)

Cont..

variation, helping with better prevention in Saudi Arabia.

Our study highlights that adult males, especially non-Saudis living in northern Riyadh city, are most affected by dengue, particularly in the last quarter of the year. Key risk factors include mosquito exposure and stagnant water. Targeted dengue prevention efforts should focus on high-risk groups and intensifying vector control measures, particularly before and during the fourth quarter annually.

Reference:

1. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. *Nat Microbiol.* 2019;4:1508-15. doi: 10.1038/s41564-019-0476-8
2. Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. *Trop Med Health.* 2011;39:S3-S11. doi: 10.2149/tmh.2011-S05
3. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. *The Lancet Infect Dis.* 2016;16:935-41. doi: [https://doi.org/10.1016/S1473-3099\(16\)00146-8](https://doi.org/10.1016/S1473-3099(16)00146-8)
4. Al-Tawfiq JA, Memish ZA. Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review. *Vector-Borne and Zoonot Dis.* 2018;18:75-81. doi: 10.1089/vbz.2017.2209
5. Saudi Ministry of Health. Statistical Yearbook [Internet]. 2022 [cited 2025 July 1]. Available from: <https://www.moh.gov.sa/en/Ministry/Statistics/book/Documents/Statistical-Yearbook-2022.pdf>.
6. Hoque MA-A, Sardar ML, Mukul SA, Pradhan B. Mapping dengue susceptibility in Dhaka city: a geospatial multi-criteria approach integrating environmental and demographic factors. *Spat Inf Res.* 2025;33:33. doi: 10.1007/s41324-025-00635-y
7. Balady Services. [Internet]. [cited 2025 Jul 1]. Available from: <https://balady.gov.sa/en>.

Table 2: The quarterly distribution of confirmed dengue infections in Saudi Arabia for 2023 and 2024

Variable	Category	Confirmed	Probable	p-value
		No. (%)	No. (%)	
Travel within 14 days	Yes	89 (22.9%)	103 (29.1%)	0.065
	No	299 (77.1%)	251 (70.9%)	
Means of travel	Plane	53 (60.9%)	65 (65%)	0.314
	Car	33 (37.9%)	30 (30%)	
	Bus	0 (0%)	3 (3%)	
	Ship	1 (1.1%)	2 (2%)	
Travel place	Within SA	50 (57.5%)	53 (52.5%)	0.530
	Out of SA	35 (40.2%)	47 (46.5%)	
	Within and Out Of SA	2 (2.3%)	1 (1%)	
Exposure to mosquitoes	Yes	197 (50.8%)	125 (35.4%)	0.000*
	No	118 (30.4%)	141 (39.9%)	
	Not sure	73 (18.8%)	87 (24.6%)	
Presence of stagnant water	Yes	98 (25.5%)	57 (16.2%)	0.003*
	No	287 (74.5%)	294 (83.8%)	

SA= Saudi Arabia

*= p-value is considered significant if <0.05 at a 95% confidence level

Dengue Fever Outbreak in North AL Batinah Governorate (Oman), January 2023- December 2023.

Reported by: Dr. Malik ALJabri , Dr. Eman ELSayed Abd-Ellatif

Dengue is a prevalent infectious disease that is rapidly rising as a global health threat. It is caused by one of the four serotypes of the dengue virus and is transmitted to humans through the bite of female Aedes mosquitoes. The disease can vary from mild fever to more severe conditions, such as dengue hemorrhagic fever and dengue shock syndrome (1). Worldwide, The World Health Organization (WHO) reports that dengue is currently prevalent in more than 100 nations. Up to 3.6 billion people, or 40% of the global population, live in areas where dengue is endemic (2). According to estimates, the dengue virus infects 400 million people annually, causes illness in 100 million of them, and is responsible for 21,000 deaths(3). Regionally, outbreaks have also occurred in some cities of the Kingdom of Saudi Arabia, with efforts aimed at containing these outbreaks (4).There are limited studies that assess the sources and risk factors associated with the dengue fever outbreak in Oman.

It is essential to identify the sources and risk factors associated with the dengue fever outbreak in North

Batinah Governorate (Oman) in 2023. This will aid in the development of policies and strategies to control the outbreak and offer recommendations to policymakers to prevent future community outbreaks.

We conducted a case-control study with 194 laboratory-confirmed dengue fever (cases) and 194 laboratory-negative dengue fever (controls). The main objective of our study is to identify potential risk factors associated with the outbreak.

Our study showed that, among the cases, 123 (63.40%) were male and 71 (36.60%) were female. The age distribution of the cases was as follows: 98 cases (50.50%) were aged 30-59 years; 50 cases (25.80%) were 60 years or older; 38 cases (19.60%) were aged 15-29 years; and 8 cases (4.10%) were aged 1-14 years. Regarding clinical presentation, all 194 cases (100%) had documented fever. Additionally, 107 cases (55.20%) had headaches, 95 cases (49.00%) had myalgia, 78 cases (40.20%) had joint pain, 76 cases (39.20%) had

Table 1: Multivariate analysis results for different factors and dengue fever among the study sample.

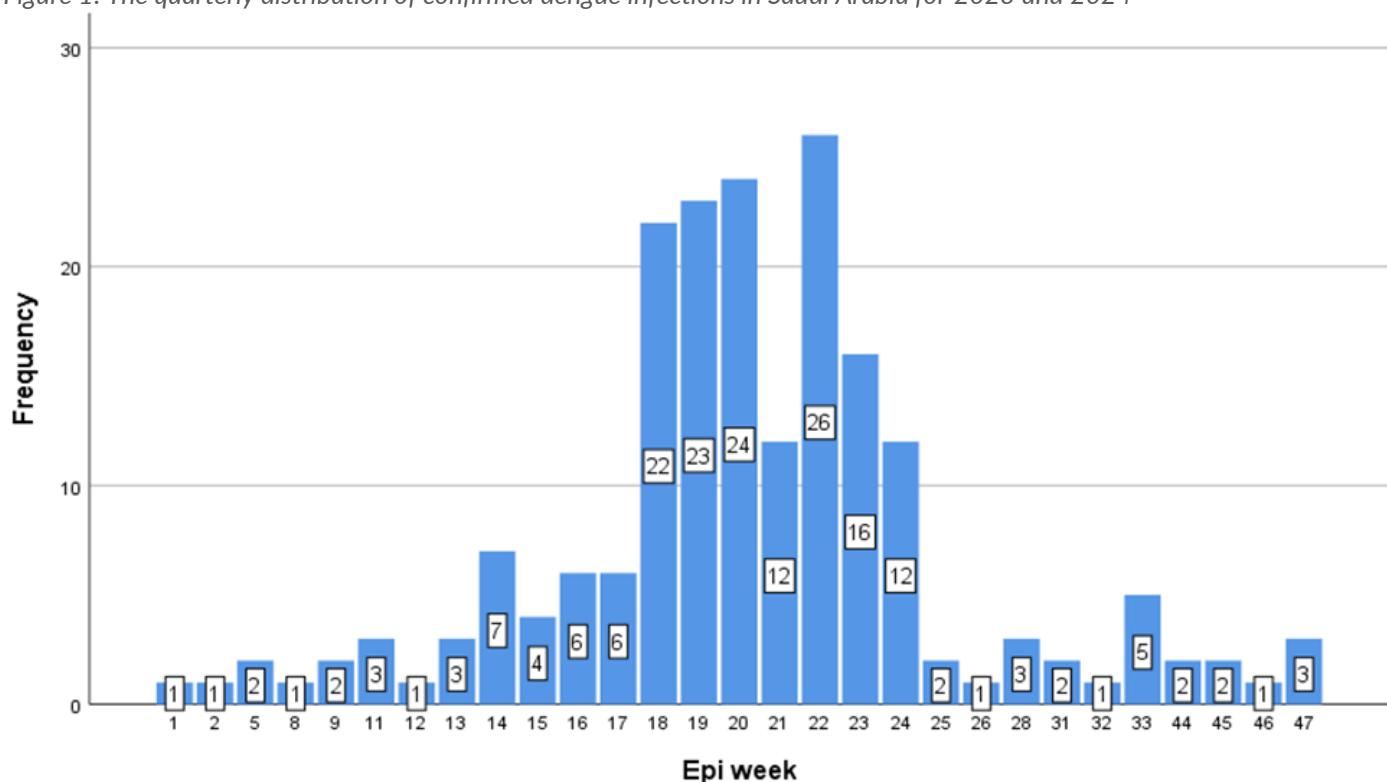
Factors (n 388)	OR	Lower limit of 95% CI of OR	Upper limit of 95% CI of OR	P value
Gender (reference group: Male)				0.053
Female	1.568	.993	2.476	
Age (reference group: ≤ 14 year				0.143
15 - 29	.953	.327	2.774	0.929
30 - 59	1.552	.558	4.317	0.400
≥ 60	1.904	.645	5.621	0.244
Wilayat (reference group: Shinas)				< 0.001*
Sohar	5.400	2.169	13.444	0.000
Khaboura	1.223	.289	5.166	0.784
Suwaiq	1.743	.559	5.433	0.338
Liwa	4.032	1.290	12.602	0.017
Saham	1.369	.398	4.703	0.618
Travel history (reference group: No)				0.002*
Yes	3.526	1.604	7.750	

Dengue Fever Outbreak in North AL Batinah Governorate (Oman), January 2023- December 2023.

Cont..

retro-orbital pain, 33 cases (17.00%) had nausea, 21 cases (10.80%) had abdominal pain, 10 cases (5.20%) had a skin rash, 1 case (0.50%) had impaired consciousness, and 1 case (0.50%) had gastrointestinal bleeding. The study also showed that 156 cases (80.40%) were Omani, and 38 cases (19.60%) were non-Omani. Among the non-Omani cases, 17 (44.70%) were Indian, 14 (36.80%) were Bangladeshi, 2 (5.30%) were Pakistani, and 1 case (2.60%) each came from China, Myanmar, Nigeria, South Africa, and Egypt. Based on travel history, 166 patients (85.60%) had no travel history, while 28 patients (14.40%) had a history of travel. Regarding the severity of cases, 123 patients (63.40%) were admitted to the hospital, and 71 patients (36.60%) were followed up in the outpatient department. In terms of outcomes, 193 patients (99.50%) recovered, while 1 patient (0.50%) passed away. The calculated case fatality rate (CFR) was 0.50%.

Statistical analysis showed that wilayat and travel history were independent factors associated with dengue fever; however, gender and age did not show a significant association with the disease


(Table 1).

This is the third local transmission outbreak of dengue fever in the governorate, and because the vector was active and present in sufficient density, transmission was sustained within the governorate (Figure 1).

Most of the cases were adult males aged 30–59 years, which was similarly observed in outbreak investigations in India 2021(5). The reason for this may be that most males of this age spend much of their time outside the home—whether at work, shopping, or attending to other needs—resulting in greater exposure and a higher risk of dengue fever infection.

Our study showed that traveling to endemic areas increases the risk of infection, as reported in another study(6). Fever, headache, and myalgia were the most common presenting clinical manifestations in patients, as reported in this study, which was also observed in another study(7). Our study also showed that Sohar recorded the highest num-

Figure 1: The quarterly distribution of confirmed dengue infections in Saudi Arabia for 2023 and 2024

Dengue Fever Outbreak in North AL Batinah Governorate (Oman), January 2023- December 2023.

Cont..

ber of dengue cases in the governorate during this outbreak, likely linked to its large expatriate population, some of whom had recently traveled to endemic areas like India(5), which may have initiated local transmission. Additionally, Sohar has high-risk areas such as Al Tareef, Humbar, and Waqaiba, which have a high number of expatriates and farms. These factors contribute to a high density of vectors and breeding sites, as these farms have stagnant water, a key factor in the spread of dengue infection, as reported in another study(7). In our study, most of the cases were Omani, which can likely be explained by local transmission. The source was most likely an expatriate who introduced the disease to Omanis in the presence of a high density of vectors.

Dengue fever is a major public health issue in Oman. Our study suggests several recommendations to contain the dengue fever outbreak, including conducting entomological surveys around the index house based on a defined protocol; implementing early notification and intensive community-wide vector control, which has proven effective at preventing further spread; identifying high-risk populations and environmental factors for targeted interventions; ensuring that there are no infection sources, such as open water tanks, in areas with cases, and verifying that windows are fitted with screens to reduce infections; engaging community leaders and stakeholders through health committees to promote public awareness; organizing awareness lectures for health staff at various locations; conducting community education sessions and producing educational materials; and ensuring continuous efforts from various government sectors, including the Ministry of Health and the Ministry of Municipalities, to contain the outbreak.

References

1. Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. *J Immunol Res.* 2016;2016(3).
2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. *Nature* [Internet]. 2013;496(7446):504-7. Available from: <http://dx.doi.org/10.1038/nature12060>
3. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy. *N Engl J Med.* 2018;379(4):327-40.
4. Melebari S, Bakri R, Hafiz A, Qabbani F, Khogeer A, Alharthi I, et al. The epidemiology and incidence of dengue in Makkah, Saudi Arabia, during 2017-2019. *Saudi Med J.* 2021;42(11):1173-9.
5. Singh N, Singh AK, Kumar A. Dengue outbreak update in India: 2022. *Indian J Public Health.* 2023;67(1):181-3.
6. Liu W, Hu W, Dong Z, You X. Travel-related infection in Guangzhou, China, 2009-2019. *Travel Med Infect Dis.* 2021;43:102106.
7. Mehmood A, Khalid Khan F, Chaudhry A, Hussain Z, Laghari MA, Shah I, et al. Risk Factors Associated with a Dengue Fever Outbreak in Islamabad, Pakistan: Case-Control Study. *JMIR public Heal Surveill.* 2021 Dec;7(12):e27266.

Field Epidemiology Training Program (FETP)

Dr. Adulaziz Saad Almeshal,

General Supervisor, FETP.

Editor-in-Chief

Dr. Suhair Saleh Alsaleh

Epidemiology Specialist, Bulletin Editor

Editorial Board:

Dr. Randa Nooh

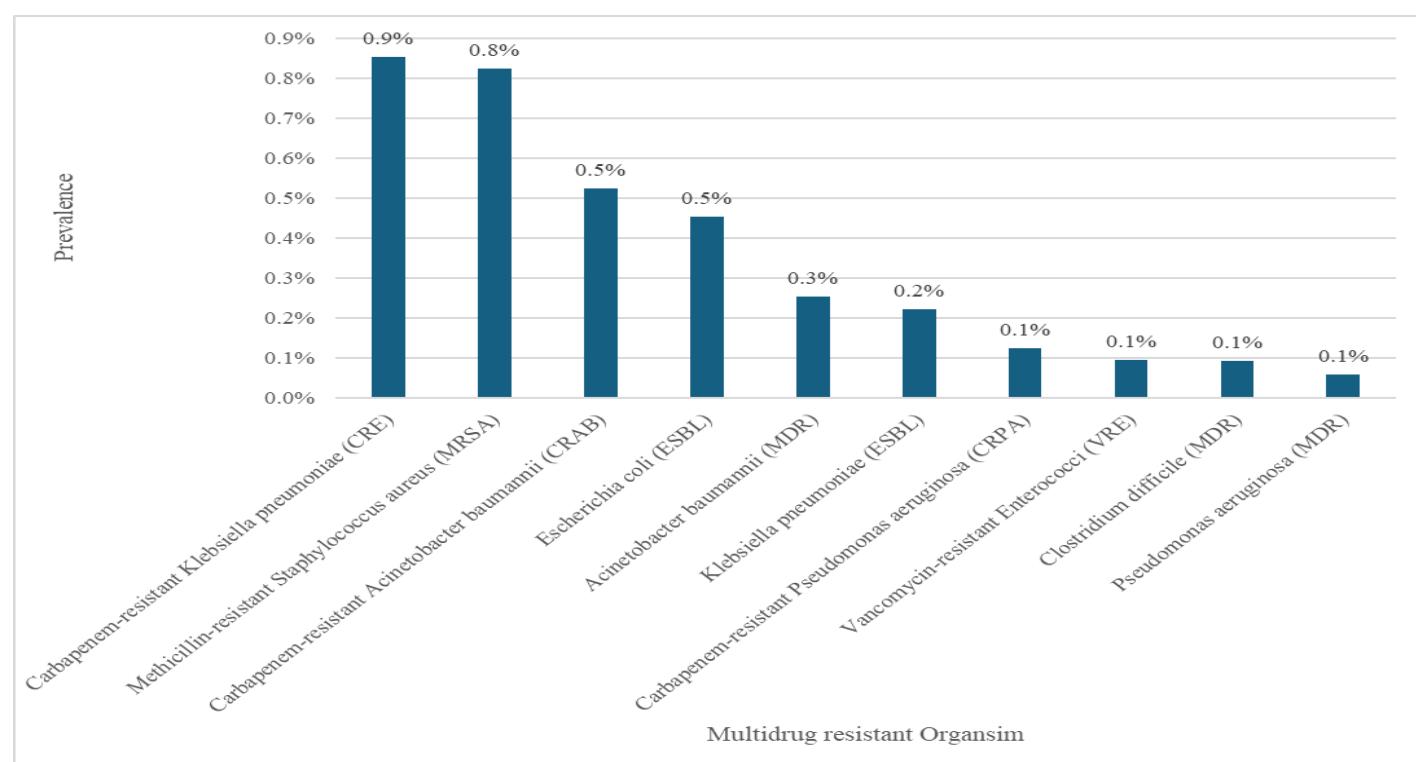
Dr. Abdullah G. Azahrani

Prevalence, Risk Factors, and Characterization of Multidrug-resistant Organisms in King Saud Medical City, 2023-2024

Reported by: Dr. Adel Aldarwesh, Dr. Eman Abd-Ellatif

Human activity accelerates antimicrobial resistance, which occurs naturally in organisms. Drug resistance discreetly complicates infectious disease therapy and increases its spread, severity, and mortality. It makes medical interventions multiple times riskier. Multidrug-resistant organisms, mostly bacteria, emerged as a result [1]. Since 2017, the World Health Organization (WHO) has addressed medication resistance via a pathogen priority list. In 2019, the WHO named drug resistance one of the top 10 public health issues worldwide, responsible for 1.27 million deaths and warns that antibiotic resistance threatens global health and development. The median rates of 35–42% for certain bacteria across 76 countries hinder the effectiveness of common infection therapies [2].

The Kingdom of Saudi Arabia's (KSA) developing healthcare system makes it more sensitive to MDROs. Insufficient infection control and immigration from countries with poor healthcare practices contribute to an increase in MDRO infections. These include antibiotic overuse, prolonged hospital stays,


and comorbidities like diabetes and chronic kidney disease.

To determine MDRO prevalence among King Saud Medical City (KSMC) hospitalized patients between May 2023 and October 2024 and investigate risk variables. The investigation will also characterize isolated MDROs' organisms and resistance patterns. We want to know how MDRO infections affect ICU admission and mortality. To determine MDRO infection distribution in KSMC departments and ICUs.

A retrospective cross-sectional study was conducted using electronic medical records of inpatients aged ≥ 18 years with culture-confirmed MDRO at King Saud Medical City between May 2023 and October 2024. Data included demographic characteristics, comorbidities, interventions, hospital stay details, and microbiological profiles. Descriptive statistics, chi-square tests, and binary logistic regression were employed.

Our analysis included 47,527 inpatients, of whom

Figure 1: Prevalence of top 10 reported organism with drug resistance at King Saud Medical City between May 2023 and October 2024

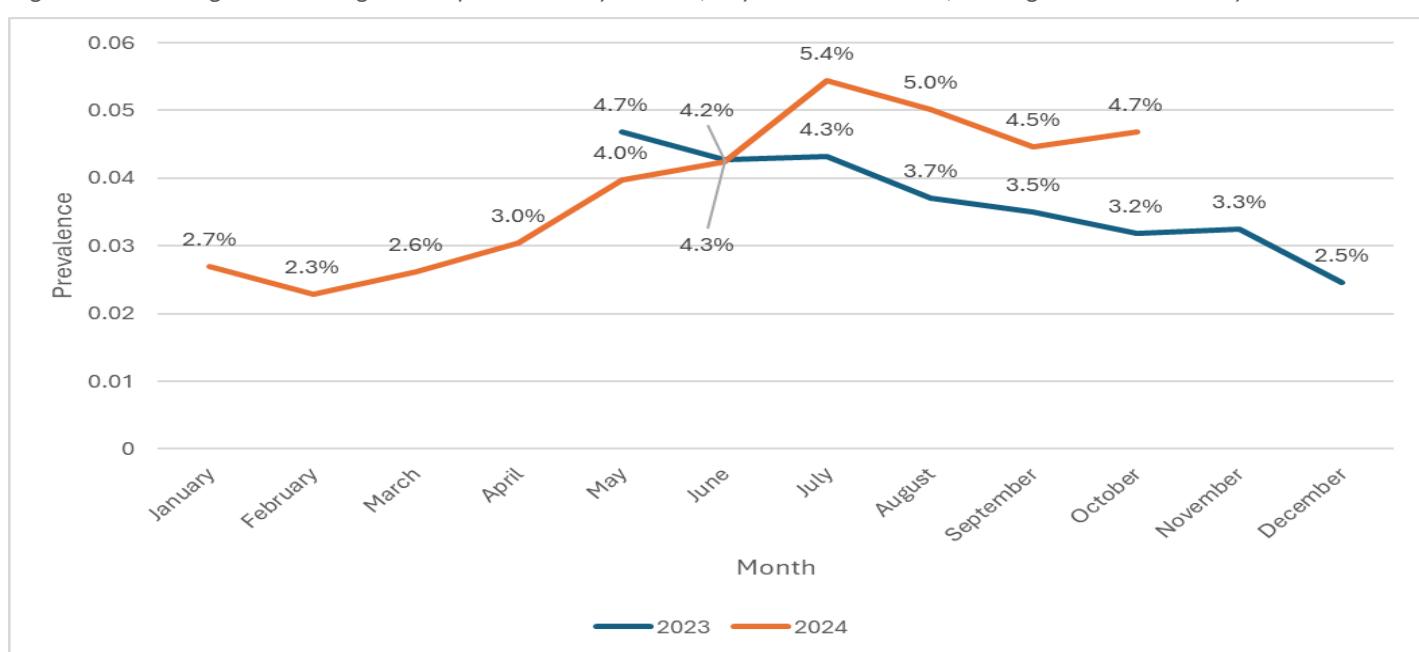
Prevalence, Risk Factors, and Characterization of Multidrug-resistant Organisms in King Saud Medical City,

Cont..

1,785 had confirmed MDRO at KSMC, resulting in a 3.8% MDRO prevalence. Demographic data of patients displayed a mean age of 49.86 years with a standard deviation of 18.35, spanning from 18 to 100 years. The most significantly impacted age group was 30 to 39 years, at 19.4%. 70.5% of patients were male, and overall, 56.9% of patients were non-Saudi (NS).

In clinical outcomes, 47.7% underwent surgery, and the death rate was 20.2%. The average duration from sample admission to results was 26 days, with a standard deviation of 43.3, a median of 12 days, and a range of 1 to 425 days.

The predominant bacteria was carbapenem-resistant *Klebsiella pneumoniae* (CRKP), with a prevalence of 0.9%, succeeded by methicillin-resistant *Staphylococcus aureus* (MRSA) at 0.8% and subsequently carbapenem-resistant *Acinetobacter baumannii* (CRAB) at 0.5% (Figure 1). The allocation of patients within the facility was almost uniform between the Intensive Care Unit (ICU) and non-ICU, including 49.4% and 50.6%, respectively.


The temporal dispersion of collected samples increased to 1077 in 2024 from 708 in 2023. May had the most positive MDROs (4.7%) in 2023, followed by July and June (4.3%). In 2024, July had the most

samples (5.4%), followed by August (5%) and October (4.7%) (Figure 2).

We identified various patient and clinical mortality risk variables in MDRO patients using a multivariate logistic regression model. Nationality showed lower mortality risks for Saudi patients compared to non-Saudi (OR = 0.5, 95% CI: 0.38–0.65, $p < 0.001$). ICU care environment significantly predicted mortality, with ICU patients having a threefold higher risk of death (OR = 2.98, 95% CI: 2.30–3.87, $p < 0.001$). Surgery patients had lower mortality rates (OR = 0.76, 95% CI: 0.59–0.97, $p = 0.03$). Compared to the reference age group (≤ 29 years), the 40-49 age group had significantly lower odds of death (OR = 0.35, 95% CI: 0.13–0.94, $p = 0.04$). However, this effect was not observed in other age groups, suggesting a nonlinear age-mortality relationship or unmeasured confounders. After adjustment, additional covariates did not affect mortality.

MDRO frequency was highest in 30-39 age group, implying that younger and middle-aged adults are more vulnerable to healthcare-related risk factors or are more mobile and utilize healthcare more frequently. In contrast to our data, research implies older age is a risk factor; groups over 70

Figure 2: Multidrug-resistant organisms' prevalence by Month (May 2023–Oct 2024) at King Saud Medical City

Prevalence, Risk Factors, and Characterization of Multidrug-resistant Organisms in King Saud Medical City, Cont..

years old had either lower admission rates or better infection control methods, which points to the importance of additional research [3,4].

Nationality affects MDRO slightly, as it is not a biological factor; however, research shows that nations may differ in healthcare practices, exposure, access to care, health-seeking behavior, or infection control. Further research is needed to identify if socio-economic, behavioral, or healthcare factors are responsible [5].

In our data, CRKP, MRSA, CRAB, and Escherichia coli (ESBL) accounted for over 85% of the identified organisms at KSMC; this percentage is significantly higher than that reported in tertiary centers internationally, which suggests that there may be region-specific ecological burdens, which made it imperative to continue adjusting or adapting infection control measures based on the need. Activities should be examined for variations in practice among settings [6].

A crucial predictor is organism dispersion by care setting, which reveals significant heterogeneity in infection patterns. *Staphylococcus aureus* comprised 29% of ICU MDRO isolates. Similarly, in regional studies, this bacterium was detected in ICUs, indicating a significant clinical relationship with severely sick patients requiring invasive assistance. *Klebsiella pneumoniae* accounted for 30.9% of non-ICU MDRO isolates, suggesting that patients may carry it out asymptotically. This study highlights the importance of comprehensive pathogenicity profiling to distinguish between colonization and invasive infection, as well as improved environmental cleaning methods in non-ICU settings, particularly with shared equipment.

Our findings advocate various practices for improving outcomes and limiting MDRO dissemination. First, infection prevention and control strategies should be reinforced in healthcare settings, particularly in the ICU, due to the increased risks in critically sick patients. Furthermore, tailored antimicrobial stewardship is essential for vulnerable groups, notably patients of specific ages with identifiable risk factors, to ensure optimal antibiotic use and address their increased infection risk. It would also be pru-

dent to implement broader MDRO screening techniques, such as screening high-risk admissions or during peak seasons, to allow for early detection and isolation of carriers. Finally, we encourage further research into the behavioral and environmental drivers of MDRO transmission that underpin the observed temporal and seasonal trends, as well as the use of molecular epidemiology tools to better track the spread of these organisms and inform targeted interventions.

References:

1. Fullybright R. Characterization of Biological Resistance and Successful Drug Resistance Control in Medicine. *Pathogens* [Internet]. 2019 May 31;8 (2):73. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631572/>
2. WHO. World Health Organization. 2023. Antimicrobial resistance. Available from: <https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance>
3. Bhargava A, Riederer K, Sharma M, Fukushima EA, Johnson L, Saravolatz L. High rate of Multidrug-Resistant Organisms (MDROs) among COVID-19 patients presenting with bacteremia upon hospital admission. *Am J Infect Control* [Internet]. 2021 Nov [cited 2025 Jul 23];49(11):1441-2. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372431/>
4. Rodríguez-Villodres Á, Martín-Gandul C, Peñalva G, Guisado-Gil AB, Crespo-Rivas JC, Pachón-Ibáñez ME, et al. Prevalence and Risk Factors for Multidrug-Resistant Organisms Colonization in Long-Term Care Facilities Around the World: A Review. *Antibiotics* [Internet]. 2021 Jun [cited 2025 Jul 28];10(6):680. Available from: <https://www.mdpi.com/2079-6382/10/6/680>
5. Zowawi HM. Antimicrobial resistance in Saudi Arabia: An urgent call for an immediate action. *Saudi Med J* [Internet]. 2016 Sep 1 [cited 2025 Jul 29];37 (9):935-40. Available from: <https://smj.org.sa/content/37/9/935>
6. Yoo JH. Antimicrobial Resistance – The ‘Real’ Pandemic We Are Unaware Of, Yet Nearby. *J Korean Med Sci* [Internet]. 2025 May 13 [cited 2025 Aug 2];40(19). Available from: <https://doi.org/10.3346/jkms.2025.40.e161>

Foodborne Disease Outbreak in a Primary School for Girls, Riyadh, Saudi Arabia, 2023: A Retrospective Cohort Study

Reported by: Dr.Asma AL Hakmani, Dr. Eman Abd-Ellatif

Foodborne diseases (FBD) are a global public health issue that significantly affects human health, healthcare systems, and socioeconomic development. Foodborne illnesses are usually infectious or toxic and caused by bacteria, viruses, parasites, or chemical substances entering the body through contaminated food.(1) It can cause sudden symptoms of abdominal pain, diarrhea, and vomiting, but most people get better in a few days without treatment. (1)The foodborne illnesses classified into foodborne infection and foodborne intoxication. (3) Foodborne Infections result from the growth of the pathogen in the human body and usually takes serval hours to weeks for symptoms to occur (3). However, foodborne intoxications are caused by chemicals or toxins produced by organisms in the food product and the manifestation appear more rapidly after con-

sumption of contaminated food (shorter onset time) than are infections. (3) Globally, approximately 600 million cases of food poisoning reported yearly, which implies that one person in every ten is affected. (2) In 2022, there were 1188 cases of foodborne disease and 176 food poisoning outbreaks across Saudi Arabia. There were 119 foodborne illness cases in Riyadh in 2022, with 19 food poisoning outbreaks. (4)

The current outbreak of foodborne diseases occurred in a girls' primary school in Riyadh City, Saudi Arabia, on December 21, 2023. On that day, the school had an open day and food served by company from outside. Therefore, we assumed that the food served by the company in the school was the source of the food poisoning outbreak.

Table 1: Food-specific attack rates and risk ratios for each food item of the foodborne outbreak in the Primary School for girls, Riyadh, 2023

Food items	Food-specific attack rates and risk ratios											P value	
	Ate specified food				Did not eat specified food				RR	CI 95			
	ill	well	total	AR %	ill	well	total	AR%		UL	LL		
Chicken Burger	62	19	81	76.54	83	95	178	46.63	1.64	2.00	1.35	< 0.0001	
Shawarma	34	15	49	69.39	111	99	210	52.86	1.31	1.64	1.05	0.018	
Chips	98	70	168	58.33	47	44	91	51.65	1.13	1.43	0.89	0.31	
Corn	38	21	59	64.41	107	93	200	53.50	1.20	1.51	0.96	0.11	
Doughnut	43	37	80	53.75	102	77	179	56.98	0.94	1.19	0.74	0.633	
Red juice	116	78	194	77.85	29	36	65	44.62	1.34	1.79	0.99	0.05	
Grape leaves	29	15	44	43.18	116	99	215	53.95	1.22	1.56	0.96	0.11	
Balilah	11	3	14	78.57	134	111	245	54.69	1.44	1.93	1.06	0.01	
cotton candy	18	2	20	90	127	112	239	53.14	1.69	2.04	1.40	< 0.0001	

Foodborne Disease Outbreak in a Primary School for Girls, Riyadh, Saudi Arabia, 2023: A Retrospective Cohort Study

Cont..

We conducted a retrospective cohort study to confirm the existence of the outbreak, confirm the diagnosis, determine the causative agent or organism if possible, and recommend preventive measures to be applied to prevent similar outbreaks in the future. In our study, we included all students and staff who ate during the open day in the primary school. We interviewed them and collected sociodemographic and food history by a semi-structured questionnaire. Then, we analyzed the data.

Our study included 259 participants, 257 students, and 2 school staff. The ages ranged between 6-40 years. Most of the cases were falling at 11 years old. Most of the cases were Saudi 83% and 17% were non-Saudi. Among cases, 97.93% had abdominal pain, 57.93% had nausea, 23.44% had vomiting, 18.62 developed diarrhea, and 4.82% had fever. Only 37 cases were seeking medical care and 222 cases were self-limiting. Out of the cases that sought medical attention, only 10 cases were collected stool cultures and the results of tests were negative. There were no hospitalizations or deaths, and all cases were discharged. The incubation period ranged from 45 minutes to 5.5 hours, with a mean of 2.5 hours. Chicken burgers, cotton candy, balilah, and shawarma were significantly associated with illness among nine food items consumed as shown in table1. Members from the Saudi Food and Drug Authority took samples from the remaining food, which were chicken burgers, chips, and grape leaves and a laboratory investigation of food samples was negative.

Based on symptoms, incubation period, epidemiological investigation, and laboratory results there might be some differential diagnosis, but we were unable to more definitively identify the source of the outbreak. The current outbreak could be caused by chemicals or toxins found in Chicken Burger, Shawarma, Balilah, and cotton candy. Cross-contamination may explain why so many food items were implicated.

References:

1. Foodborne Diseases and Outbreaks [Internet]. www.cdpn.ca.gov/Programs/CID/DCDC/Pages/FoodborneDiseasesandOutbreaks.aspx
2. World Health Organization (WHO). Food safety [Internet]. Who.int. World Health Organization: WHO; 2022. Available from: <https://www.who.int/news-room/fact-sheets/detail/food-safety>
3. Uri.edu. Available from: <https://web.uri.edu/wp-content/uploads/sites/25/Causes-and-Prevention-of-Foodborne-Illness-1.pdf>
4. Gov.sa. Available from: <https://www.moh.gov.sa/en/Ministry/Statistics/book/Documents/Statistical-Yearbook-2022.pdf>

الوضع الوبائي لعدوى فيروس حمى الضنك في منطقة الرياض، المملكة العربية السعودية: دراسة مقطعة (سبتمبر ٢٠٢٢ - ديسمبر ٢٠٢٤)

د. صالح الغامدي، د. أفنان يونس

مدينة الرياض، وخاصة في أحياء النرجس (١٠,٥٪) والعارض (٧,٥٪).

أظهرت بيانات دراستنا نمطاً متكرراً للزيادة الفصلية، وبلغت ذروة الإصابات في الربع الرابع (شهر أكتوبر - ديسمبر). في عام ٢٠٢٣ ارتفعت الحالات من ٢٠ حالة في الربع الأول إلى ١٤٥ حالة في الربع الرابع. أما في عام ٢٠٢٤ فقد ارتفعت من ٢٥ حالة في الربع الأول إلى ١٥٣ حالة في الربع الرابع.

أظهرت نتائج دراستنا أن التعرض للبعوض وجود المياه الراكدة كانا من العوامل البيئية المرتبطة بشكل كبير بالإصابة (القيمة الاحتمالية ٠,٠٣٠٠). على التوالي). حيث كانت نسبة التعرض للبعوض أعلى بين الحالات المؤكدة (٥٠,٨٪) مقارنة بالحالات المحتملة (٣٥,٤٪)، وكذلك وجود المياه الراكدة بنسبة (٢٥,٥٪) للحالات المؤكدة مقابل (١٦,٢٪) للحالات المحتملة. بينما لم تُظهر عوامل مثل السفر خلال ١٤ يوماً أو مكان السفر أي دلائل إحصائية معتبرة.

فيما يخص تقييم المعرفة، عبر معظم الحالات المؤكدة (٨٩,٩٪) عن معرفتهم بعوامل الخطورة التي تؤدي إلى تكاثر البعوض وكانت العوامل المتعلقة بتجمع المياه الراكدة هي الأكثر ذكرًا (٧٩,٤٪). وأفاد أغلبهم (٨٥,٨٪) بأنهم يستخدمون منتجات طاردة للبعوض. وعند سؤال الحالات المؤكدة عن الأمراض التي ينقلها البعوض ذكر (٤٣,٨٪) فيروس حمى الضنك و(١٩,٨٪) ذكروا الملاريا.

تؤكد نتائج دراستنا أن الذكور البالغين خاصة غير السعوديين المقيمين في شمال مدينة الرياض هم الأكثر عرضة للإصابة لا سيما في الربع الأخير من السنة. وتشكل المياه الراكدة والتعرض للبعوض عوامل رئيسية في انتقال المرض وعليه يجب توجيه العوامل الوقائية نحو الفئات الأكثر خطورة مع تكثيف إجراءات مكافحة النوائل قبل وأثناء الربع الرابع من كل عام.

يعيش حوالي أربع مليار شخص حول العالم أي ما يقارب نصف سكان الكوكبة الأرضية في مناطق موبوءة بحمى الضنك كما يتم تسجيل نحو ٤٠٠ مليون إصابة سنوياً، منها ما بين ٥٠ إلى ١٠٠ مليون حالة تظهر عليها الأعراض. تنتقل حمى الضنك بشكل رئيسي عن طريق البعوضة الزاعجة المصرية. تشير التقديرات إلى أنه بحلول عام ٢٠٨٠ قد يصبح أكثر من ست مليارات شخص معرضين للإصابة بحمى الضنك وهو ما يُقدر بضعف عدد المعرضين للإصابة في عام ٢٠١٥ تقريرياً مما يعكس الحاجة الملحة لتعزيز التدابير الوقائية.

رغم أن المملكة العربية السعودية كانت شبه خالية من حمى الضنك حتى منتصف التسعينيات، إلا أن الفاشيات بدأت تظهر بوضوح منذ عام ١٩٩٤ مما جعل المرض يمثل تحدياً صحيحاً متزايداً. أظهرت بيانات عام ٢٠٢٢ تسجيل ٣٦٧ حالة على مستوى المملكة منها ١١٥ حالة في منطقة الرياض.

نظرًا للنمو السكاني السريع والتلوّح العمري وازدياد السفر والهجرة لمدينة الرياض فإن فهم ديناميكية انتشار حمى الضنك في المدينة أصبح أمراً بالغ الأهمية. تهدف هذه الدراسة إلى سد الفجوة المعرفية من خلال تحديد الفئات السكانية الأكثر عرضة للمرض وتحليل الأنماط الموسمية والزمنية لتفشي المرض ودراسة العلاقة بين تاريخ السفر والإصابة بالمرض، إضافة إلى تقييم مستوى المعرفة والممارسات الوقائية لدى الحالات المبلغ عنها.

أجرينا دراسة مقطعة باستخدام بيانات ثانوية لجميع حالات فيروس حمى الضنك المبلغ عنها في منطقة الرياض في الفترة من منتصف سبتمبر ٢٠٢٢ وحتى ديسمبر ٢٠٢٤، وذلك بالاعتماد على سجلات الإدارة العامة لنوائل المرض بوزارة الصحة.

من بين ١٥٤٤ حالة مسجلة، كانت هناك ٦٨٣ حالة مؤكدة (٤٤,٢٪). شكلت الفئة العمرية ما بين ٢٥ وأقل من ٤٥ عاماً معظم الإصابات بينما كانت الفئة الأقل إصابة هي ما تحت سن ١٥ عاماً. شكل الذكور حوالي ثلثي الحالات وكان نحو نصف المصابين من الجنسية السعودية. سُجلت ٨٢,٤٪ من الحالات المؤكدة داخل

تفشي حمى الضنك في محافظة شمال الباطنة (عمان)، من يناير ٢٠٢٣ إلى ديسمبر ٢٠٢٣

د. مالك الجابری، د. ایمان عبداللطیف

في الفئة العمرية ٣٠-٥٩ عاماً، وقد يُعزى السبب في ذلك إلى أن نسبة التعرض لخطر الإصابة تكون أكبر لدى هذه الفئة، نظراً لأن غالبية وقتهم تقضي خارج المنزل.

إن السفر إلى مناطق مستوطنة (منتشرة فيها المرض) يزيد من خطر الإصابة بحمى الضنك كما أوضحت الدراسة.

أظهرت الدراسة أن ولاية صحار سجلت أعلى نسبة من حالات حمى الضنك خلال هذا التفشي، وقد يرجع السبب إلى أن هذه الولاية تضم عدداً كبيراً من الوافدين القادمين من مناطق مستوطنة، مما أدى إلى بدء الانتقال المحلي للحالات. كذلك، تحتوي الولاية على كثافة مزدوجة قد تحتوي على مياه راكدة، مما يساهم في انتشار عدوى حمى الضنك. وقد يكون مصدر العدوى من القادمين من هذه المناطق، الذين أدخلوا المرض إلى السكان المحليين، خاصةً في ظل وجود كثافة عالية من النواقل.

تشير دراستنا إلى عدة توصيات للحد من تفشي حمى الضنك، تشمل: إجراء مسوحات حشرية حول المنزل الذي به إصابة مؤكدة استناداً إلى بروتوكول محدد؛ تنفيذ الإبلاغ المبكر ومكافحة النواقل المجتمعية على نطاق واسع؛ ضمان خلو المناطق التي ظهرت فيها الحالات من مصادر العدوى، مثل خزانات المياه المكشوفة، والتحقق من تركيب شبابيك على النوافذ لتقليل الإصابات؛ إجراء جلسات توعية مجتمعية وإنتاج مواد تعليمية؛ وضمان الجهود المستمرة من مختلف القطاعات الحكومية، بما في ذلك وزارة الصحة ووزارة البلديات، للحد من تفشي المرض.

يُعد مرض حمى الضنك من الأمراض المعدية الشائعة ويمثل تهديداً صحيحاً عالمياً، إذ ينتشر حالياً في أكثر من ١٠٠ دولة. ووفقاً لمنظمة الصحة العالمية، فإن ٤٠٪ من سكان العالم يعيشون في مناطق ينتشر فيها حمى الضنك. إقليمياً في السعودية، تم رصد عدة تفشيات لحمى الضنك في مدن مختلفة، حيث أدى ذلك إلى جهود متكاملة للحد من انتشار المرض. هناك دراسات محدودة تقييم عوامل الخطر المرتبطة بتفشي حمى الضنك في سلطنة عمان.

أجرينا دراسة من نوع "دراسة الحالات والشواهد" شملت ١٩٤ حالة مؤكدة مخبرياً بالإصابة بحمى الضنك، و١٩٤ شاهداً سلبياً مخبرياً (أي لم يُصبوا بالمرض). كان الهدف الأساسي من دراستنا هو تحديد العوامل المحتملة المرتبطة بتفشي المرض.

أظهرت هذه الدراسة أن الذكور بلغ عددهم ١٢٣ (٤٠٪)، وكان أكثر المصابين ممن تراوح أعمارهم بين ٣٠ و٥٩ عاماً، بعدد بلغ ٩٨ حالة (٥٠٪). أما بالنسبة للأعراض، فقد كانت الحمى أكثرها شيوعاً وظهرت في ١٩٤ حالة (١٠٠٪)، تلتها الصداع في ١٠٧ حالات (٥٥٪). وأظهرت الدراسة أن ١٥٦ حالة (٤٠٪) كانت من المواطنين العُمانيين، في حين كانت ٣٨ حالة (١٩٪) من غير العُمانيين. كما تبيّن أن ١٦٦ حالة (٨٥٪) لم يكن لديها تاريخ سفر، بينما ٢٨ حالة (١٤٪) كان لديها تاريخ سفر. وأوضحت النتائج أن أغلب المصابين كانوا من ولاية صحار، بعدد بلغ ١٤٨ حالة (٧٦٪). أما نسبة الوفاة المحسوبة، فقد بلغت ٥٪.

اشتملت عوامل الخطر المرتبطة بتفشي حمى الضنك في هذه الدراسة على الولاية، حيث كان الأشخاص من ولاية صحار أكثر عرضة للإصابة بحمى الضنك مقارنة بغيرهم في باقي الولايات، وذلك لوجود الناقل بكثافة عالية في ولاية صحار. كما وجدت الدراسة أن وجود تاريخ سفر إلى أماكن تشهد تفشي لحمى الضنك يُعد من عوامل الخطر للإصابة بالمرض.

كانت معظم الحالات في هذه الدراسة من الذكور البالغين

انتشار وعوامل الخطر وتوصيف الكائنات المقاومة للأدوية متعددة في مدينة الملك سعود الطبية ٢٠٢٣-٢٠٢٤

د. عادل الدرويش، د. إيمان عبد اللطيف

فثات المقاومة شيوغاً (٤٣,٢%). وُجِدَت ارتباطات مهمة بين البكتيريا ومكان الرعاية. وقد حدد تحليل الانحدار، فثات عمرية معينة، ورعاية وحدة العناية المركزة، والحالة الجراحية كمؤشرات لوفيات. شكلت أربعة أنواع من البكتيريا المقاومة لمضادات ميكروبات متعددة أكثر من ٨٥٪ من الإصابات. هذه النسبة أعلى بكثير من تلك المبلغ عنها في المراكز على المستوى الدولي. بالإضافة إلى وجود سيادة لبعض البكتيريا حسب منطقة العناية المركزة والغير مركزة.

ارتفع التشتت الزمني للعينات التي تم جمعها إلى ١٠٧٧ في عام ٢٠٢٤ من ٧٠٨ في عام ٢٠٢٣. كان لشهر مايو أكثر إيجابية (٤,٧٪) في عام ٢٠٢٣، يليه يونيو (٤,٣٪). في عام ٢٠٢٤، كان لدى يونيو أكبر عدد من العينات (٥,٤٪)، يليه أغسطس (٥٪) وأكتوبر (٤,٧٪).

تدعو النتائج توسيع الممارسات لتحسين والحد من نشر العدوى. أولاً، ينبغي تعزيز استراتيجيات الوقاية من العدوى ومكافحتها في مراافق الرعاية الصحية، ولا سيما في وحدة العناية المركزة، بسبب زيادة المخاطر لدى المرضى المصابين بأمراض خطيرة. علاوة على ذلك، فإن الإشراف المخصص على مضادات الميكروبات أمر ضروري للفئات الضعيفة، ولا سيما المرضى من أعمار محددة مع عوامل خطر يمكن تحديدها، لضمان الاستخدام الأمثل. وسيكون من الحكمة أيضاً تنفيذ تقنيات أوسع نطاقاً لفحص الأدوية المتعددة الكثافة، مثل فحص حالات القبول عالية الخطورة أو خلال مواسم الذروة، للسماح بالكشف المبكر عن الناقلات وعزلها. أخيراً، نشجع على إجراء مزيد من البحث في الدوافع السلوكية والبيئية لانتقال العدوى التي تدعم الاتجاهات الزمنية والموسمية الملحوظة، بالإضافة إلى استخدام أدوات علم الأوبئة الجزيئية لتبني انتشار هذه الكائنات بشكل أفضل وإبلاغ التدخلات المستهدفة.

يسع النشاط البشري من مقاومة مضادات الميكروبات، والتي تحدث بشكل طبيعي في دورة حياة الكائنات الحية. نتيجة لذلك ظهرت الكائنات الحية المقاومة للأدوية المتعددة، ومعظمها من البكتيريا. منذ عام ٢٠١٧، تناولت منظمة الصحة العالمية مقاومة الأدوية من خلال قائمة أولويات مسببات الأمراض. في عام ٢٠١٩، صنفت المنظمة مقاومة الأدوية كواحدة من أكبر ١٠ قضايا صحية عامة، وهي مسؤولة عن ١,٢٧ مليون حالة وفاة، وتحذر من أن مقاومة المضادات الحيوية تهدد الصحة والتنمية العالميين. نمو نظام الرعاية الصحية في المملكة العربية السعودية يجعله حساساً للكائنات المقاومة للأدوية متعددة. ويساهم عدم كفاية مكافحة العدوى والهجرة من البلدان ذات الممارسات الصحية الناقصة في زيادة حالات العدوى.

أجريت دراسة تقصي مقطعي بأثر رجعي باستخدام السجلات الطبية الإلكترونية للمرضى المنومين في مدينة الملك سعود الطبية أكثر من ٢٤ ساعة والذي تكون أعمارهم ١٨ عاماً وأكثر ولديهم عينات إيجابية لبكتيريا مقاومة لمضادات ميكروبات متعددة بين مايو ٢٠٢٣ وأكتوبر ٢٠٢٤. تضمنت المعطيات الخصائص للمرضى والبكتيريا المقاومة.

النتائج شملت ١٧٨٥ عينة مريض إيجابية لبكتيريا مقاومة لمضادات ميكروبات متعددة من ٤٧,٥٢٧ مريضاً منوماً. بمعدل انتشار ٣,٨٪. بلغ متوسط الأعمار ٤٩,٨٦ سنة؛ ٧٠,٥٪ من الذكور، و٥٦,٩٪ من غير السعوديين، و٦,٥٪ في أماكن رعاية خارج وحدة العناية المركزة، ٤٧,٧٪ خضعوا لتدخل جراحي، نسبة الوفاة بين الحالات ٢٠,٢٪.

كانت أكثر أنواع البكتيريا انتشاراً هي الكلبسيلة الرئوية (٩,٠٪)، والمكورات العنقودية الذهبية (٨,٠٪)، والراكدة اليومانية (٥,٠٪). وكانت مقاومة الكاريابينيم هي أكثر

تفشی الأمراض المنقولة بالغذاء في مدرسة ابتدائية للبنات، الرياض،
المملكة العربية السعودية، ٢٠٢٣: دراسة حشدية رجعية

د. أسماء الحكماني، د. إيمان عبد اللطيف

مستهلكة، برغر الدجاج و البليلة و حلوي القطن و الشاورما فقد ارتبطت بشكل كبير بالمرض. جاءت نتيجة الفحوصات المخبرية لعينات الطعام (برجر الدجاج، رقائق البطاطس وورق العنب) وستة مسحات من المستقيم سلبية. ولم تكن هناك حالات تنويم في المستشفى أو وفيات.

الاستنتاجات: بناءً على الأعراض والتحقيق الوبائي في فترة الحضانة والنتائج المختبرية، قد يكون هناك بعض التشخيص التفريقي، لكننا لم نتمكن من تحديد مصدر تفشي المرض بشكل أكثر تحديداً. قد يكون سبب تفشي المرض الحالي هو المواد الكيميائية أو السموم الموجودة في برج الدجاج، والشاورما، والبليلة، وحلوى القطن. قد يفسر التلوث المتبادل سبب الكثير من حالات التسمم الغذائي. للك فقد نوصي بزيادة الإشراف والفحوصات الدورية لمتداولي الأغذية. كما نوصي أيضًا بمزيد من التشقيق لمتعاملى الأغذية حول السلامة الغذائية.

الخلفية: الأمراض المنقولة بالغذاء هي قضية صحة عامة عالمية تؤثر بشكل كبير على صحة الإنسان وأنظمة الرعاية الصحية والتنمية الاجتماعية والاقتصادية. عادة ما تكون الأمراض المنقولة بالغذاء معدية أو سامة بطبعتها ومسبباتها قد تكون نتيجة بكتيريا أو فيروسات أو طفيليات أو بسبب مواد كيميائية التي تدخل الجسم من خلال الأطعمة الملوثة. التفشي الحالي للأمراض المنقولة بالغذاء في مدرسة ابتدائية للبنات في مدينة الرياض بالمملكة العربية السعودية في ٢١ ديسمبر ٢٠٢٣.

الأهداف: تأكيد وجود تفشي المرض، وتأكيد التشخيص، وتحديد الحالات، وتحديد مصدر تفشي المرض، وتحديد العامل المسبب أو الكائن الحي إن أمكن وطريقة انتقاله، والتوصية بالتدابير الوقائية التي يجب تطبيقها للوقاية من تفشيات مماثلة في المستقبل.

الطريقة: تم إجراء دراسة حشدية رجعية لدراسة الفاشية الحالية. تم تعريف الحالات على أنها أي شخص تناول الطعام خلال اليوم المفتوح في المدرسة الابتدائية للبنات في ٢١ ديسمبر ٢٠٢٣، وظهر عليه أي أو مجموعة من الأعراض التالية: الإسهال أو القيء أو الحمى أو آلام البطن خلال ٣٦ ساعة من تناول الطعام. قمنا بجمع المعلومات الشخصية للمرضى، والأعراض، والتاريخ الغذائي باستخدام استبيان. قمنا بمراجعة النتائج المختبرية المتوفرة للحالات والمواد الغذائية المحتجزة، كما أجرينا بحثاً نشطاً عن الحالات لتحديد المزيد من الحالات. تم تحليل البيانات التي تم SPSS الحصول عليها باستخدام

النتيجة: تناولت ١٤٥ حالة ظهرت معها الأعراض من بين ٢٥٩ طالبة تناولت الطعام خلال اليوم المفتوح في المدرسة الابتدائية بمدينة الرياض، مما يدل على أن نسبة الإصابة بلغت ٥٥,٩٨٪. ومن بين ١٤٥ حالة، تراوحت الأعمار بين ٤٠-٦٠ سنة. ومن بين الحالات، كان ٩٧,٩٣٪ يعانون من آلام في البطن، و ٥٧,٩٣٪ يعانون من الغثيان، و ٤٤,٢٣٪ يعانون من القيء، و ١٨,٦٢٪ يعانون من الإسهال، و ٤,٨٢٪ يعانون من الحمى. تراوحت فترة الحضانة من ٤٥ دقيقة إلى ٥,٥ ساعة بمتوسط ٢,٥ ساعة. من بين تسعه مواد غذائية

